Definitions Algebra qualifying course MSU, Fall 2016

Joshua Ruiter

October 15, 2019

This document was made as a way to study the material from the fall semester algebra qualifying course at Michigan State University, in fall of 2016. It serves as a companion document to the "Theorems" review sheet for the same class.

Contents

1	Gro	ups
	1.1	Basics
	1.2	Symmetric Group
	1.3	Cosets and Quotient Groups
	1.4	Centralizers and Normalizers
	1.5	Towers
	1.6	Group actions
	1.7	Sylow Theory
	1.8	Free groups
	1.9	Abelian groups
		1.9.1 Finitely generated abelian groups
		1.9.2 Bilinear pairings
		1.9.3 Dual group
	1.10	Inverse limit and completion
2	Cat	egories 10
3	Ring	$_{ m gs}$
	3.1	Interesting examples of rings
	3.2	Ideals
	3.3	Localization
	3.4	Polynomials
4	Mod	dules over rings
	4.1	Homomorphism group and hom functor
	4.2	Free modules
	4.3	Chain complexes

1 Groups

1.1 Basics

Definition 1.1. Let $f: X \to Y$ be a map of sets. We define the **preimage** of a subset of A of Y to be $f^{-1}(A) = \{x \in X : f(x) \in A\}$.

Definition 1.2. Let S be a finite set. The **cardinality of S**, denoted |S|, is the number of elements in S.

Definition 1.3. The **trivial group** is the group with only one element. We often use the symbol **0** to refer to the trivial group. A subgroup is said to be **trivial** if it is just the identity. A homomorphism is said to be **trivial** if the image is the trivial subgroup.

Justification for using the symbol 0 for the trivial group: We can impose a "monoid" structure on the category of groups by the binary operator $G, G' \mapsto G \times G'$. (I write monoid in quotes because the object collection in the category of groups is not actually a set.) This binary operator is associative up to isomorphism; that is,

$$G \times (G' \times G'') \cong (G \times G') \times G''$$

And the trivial group is the "unit" element of this "monoid," because

$$G \times 0 \cong 0 \times G \cong G$$

So when people use the symbol 0 to refer to the trivial group, they're thinking of this "monoid" structure.

Definition 1.4. Let G be a group. We say that $S \subset G$ generates G if every element of G can be written as a product of elements in S. We call S a set of generators for G.

Definition 1.5. A cyclic group is a group G such that every element $x \in G$ is of the form a^n for some $a \in G$, $n \in \mathbb{N}$. That is, a cyclic group is generated by one element.

Definition 1.6. Let G be an abelian group and fix $n \in \mathbb{Z}$. The **n-th power map** is the $map : G \to G$ given by $\mathbf{x} \mapsto \mathbf{x}^n$. It is a group homomorphism.

Definition 1.7. The **kernel** of a group homomorphism $\phi: G \to G'$ is the preimage of the identity, that is, $\ker \phi = \{g \in G : \phi(g) = e'\}.$

Definition 1.8. An automorphism is an isomorphism from a group to itself. The set of automorphisms of a given group G is denoted Aut(G). (It is a group under function composition.)

Definition 1.9. An endomorphism is a homomorphism from a group to itself.

Definition 1.10. A group embedding is an injective group homomorphism.

1.2 Symmetric Group

Definition 1.11. Let S be a nonempty set and let G be the set of bijections $S \to S$. Then G is called the **permutation group** of S. (The operation is function composition.)

Definition 1.12. Let $J_n = \{1, ..., n\}$ and let S_n be the permutation group of J_n . Then S_n is called the **symmetric group** on n elements. Note that $|S_n| = n!$.

Definition 1.13. A transposition is an element $\tau \in S_n$ such that there exists $a, b \in J_n$ so that $\tau(a) = b$ and $\tau(b) = a$ and $\tau(x) = x$ for $x \neq a, b$. (Note: The transpositions generate S_n .)

Definition 1.14. A permutation $\sigma \in S_n$ is **even** if it can be written as a product of an even number of 2-cycles. A permutation is **odd** if it can be written as a product of an odd number of 2-cycles.

Definition 1.15. The alternating group is the subgroup of S_n of even permutations. It is denoted A_n .

1.3 Cosets and Quotient Groups

Definition 1.16. Let G be a group, H a subset, and $x \in G$. Then we define $xH = \{xh : h \in H\}$.

Definition 1.17. Let G be a group, and H, K subsets. Then we define $\mathbf{HK} = \{xy : x \in H, y \in K\}$.

Definition 1.18. Let G be a group and H a subgroup. A **left coset** for H is a subset of G of the form $aH = \{ah : h \in H\}$ for some $a \in G$.

Using the above notation, we get the rule for multiplying cosets:

$$(xH)(yH) = xyH$$

Definition 1.19. Let G be a group and H a subgroup. The **index of H in G** is the number of left cosets of H in G. It is denoted [G:H] or (G:H).

Definition 1.20. Let G be a group and H a subset. We define $xHx^{-1} = \{xhx^{-1} : h \in H\}$.

Definition 1.21. A subgroup $H \subset G$ is **normal** if for all $x \in G$, $xHx^{-1} = H$ (equivalently, xH = Hx). We denote this by $\mathbf{H} \triangleleft \mathbf{G}$.

Definition 1.22. A group G is **simple** if its only normal subgroups are itself and the trivial subgroup, and G is nontrivial.

Definition 1.23. Let G be a group and H a normal subgroup. Then the **quotient group** G/H is the set of cosets $\{xH : x \in G\}$ with the operation

$$(xH)(yH) = (xy)H$$

It is a group.

Definition 1.24. Let G be a group and H a normal subgroup. The **canonical map** or **canonical projection** from G to G/H is the map $G \to G/H$ given by $g \mapsto gH$.

Definition 1.25. Let G be a group. A **maximal normal subgroup** is a normal subgroup H such that if K is a normal subgroup of G with $H \subset K$, then K = H or K = G.

1.4 Centralizers and Normalizers

Definition 1.26. Let G be a group and S be a subset. The **normalizer of S in G** is $N_G(S) = \{x \in G : xSx^{-1} = S\}.$

Definition 1.27. Let G be a group and S be a subset. The **centralizer of S in G** is $C_G(S) = \{x \in G : xsx^{-1} = s \ \forall s \in S\}.$

Definition 1.28. Let G be a group. The **center** of G is the centralizer of G in itself, which is $Z(G) = \{x \in G : xy = yx \ \forall y \in G\}.$

Definition 1.29. Let G be a group and $a \in G$. We say that m is an **exponent of a** if $a^m = e$ and m > 0.

Definition 1.30. Let G be a group. We say that m is an **exponent of G** if m is an exponent of every $g \in G$.

Definition 1.31. Let G, H be groups. We define the **direct product** of G and H, denoted $G \times H$ by $\{(g,h): g \in G, h \in H]\}$ and define multiplication on $G \times H$ component-wise.

Definition 1.32. Let N, H be groups, and let $\phi : H \to \operatorname{Aut}(N)$ be a group homomorphism. We define the **semidirect product** of N and H through ϕ to be

$$N \rtimes_{\phi} H = \{(n,h) : n \in N, h \in H\}$$

with a multiplication defined by

$$(n_1, h_1)(n_2, h_2) = (n_1\phi(h_1)n_2, h_1h_2)$$

Definition 1.33. Let $G_0, G_1, \ldots G_n$ be groups and $f_1, \ldots f_n$ be group homomorphism with $f_i: G_{i-1} \to G_i$.

$$G_0 \xrightarrow{f_1} G_1 \xrightarrow{f_2} G_2 \xrightarrow{f_3} \dots \xrightarrow{f_n} G_n$$

We call this an **exact sequence** if for each i, we have $\ker f_{i+1} = \operatorname{im} f_i$.

Definition 1.34. Let G be a group. The **commutator subgroup** of G, denoted [G, G] is the subgroup of G generated by all elements of the form $aba^{-1}b^{-1}$ for $a, b \in G$.

1.5 Towers

Definition 1.35. Let G be a group. A (finite) sequence of subgroups

$$G = G_0 \supset G_1 \supset G_2 \supset \ldots \supset G_n$$

is called a **tower of subgroups** for G.

Definition 1.36. A tower of subgroups $G_0, G_1, \ldots G_n$ is **normal** if each G_{i+1} is normal in G_i .

Definition 1.37. A normal tower of subgroups $G_0, \ldots G_n$ is **abelian** if each quotient G_i/G_{i+1} is an abelian group.

Definition 1.38. A normal tower of subgroups $G_0, \ldots G_n$ is **cyclic** if each quotiet G_i/G_{i+1} is a cyclic group.

Definition 1.39. Let $f: G \to G'$ be a group homomorphism, and let

$$G' = G'_0 \supset G'_1 \supset \ldots \supset G'_n$$

be a tower of G'. The **preimage** of this tower is the set of preimages of each G'_i under f, that is, $f^{-1}(G'_i)$.

Definition 1.40. Let

$$G = G_0 \supset G_1 \supset \ldots \supset G_n$$

be a tower of subgroups for G. A **refinement** of this tower is another tower for G formed by inserting a finite number of subgroups in between the G_i .

Definition 1.41. Two towers of subgroups for G given by

$$G = G_1 \supset \ldots \supset G_n$$
$$G = H_1 \supset \ldots \supset H_m$$

are **equivalent** if n = m and there is a permutation σ of $\{1...,n\}$ so that $G_i/G_{i+1} \cong H_{\sigma(i)}/H_{\sigma(i+1)}$ for all i.

Definition 1.42. A group G is **solvable** if it has an abelian tower ending in the trivial group.

1.6 Group actions

Definition 1.43. Let G be a group and S a set. A **group action** of G on S is a map $G \times S \to S$ given by $(x,s) \mapsto xs$ satisfying x(ys) = (xy)s for all $x,y \in G, s \in S$ and es = s for all $s \in S$. This is equivalent to having a homomorphism $\pi : G \to \text{Perm}(S)$.

Definition 1.44. Let $\psi: G \to \operatorname{Aut}(G)$ be the map $x \mapsto \psi_x$ where $\psi_x: G \to G$ is the map $y \mapsto xyx^{-1}$. This is a group action of G on itself, and it is called **conjugation**. The image of ψ in $\operatorname{Aut}(G)$ is called the set of **inner automorphisms** of G, denoted $\operatorname{Inn}(G)$.

Definition 1.45. Let G be a group and let $x \in G$. The **conjugacy class of x** is the set of elements of G conjugate to x, denoted $\operatorname{cl}(\mathbf{x})$. More precisely, $\operatorname{cl}(x) = \{a \in G : \exists g \in G \text{ such that } gxg^{-1} = a\}$.

Definition 1.46. Let A, B be subsets of a group G. We say that A, B are **conjugate** if there exists $x \in G$ so that $xAx^{-1} = B$.

Definition 1.47. Let G be a group acting on a set S and let $s \in S$. The **stabilizer of s** (also called the **isotropy group of s**) is the set $\{x \in G : xs = s\}$. It is denoted G_s .

Definition 1.48. Let $G \to \operatorname{Perm}(S)$ be a group action. The action is called **faithful** if the kernel of this map is trivial, that is, if the only $x \in G$ that maps to Id_S is the identity.

Definition 1.49. Let G act on a set S. A **fixed point** of this action is an element $s \in S$ such that xs = s for all $x \in G$.

Definition 1.50. Let G act on a set S and let $s \in S$. The **orbit of** s is the set $G.s = \{gs : g \in G\}$.

Definition 1.51. Let G act on sets S,T. A map $f:S \to T$ is called a **G-map** or an equivariant map or a morphism of **G-sets** if f(g.s) = g.f(s) for all $g \in G, s \in S$.

Definition 1.52. A group action is **transitive** if there is only one orbit.

1.7 Sylow Theory

Definition 1.53. Let p be prime. A **p-group** is a finite group of order p^n for some $n \in \mathbb{N}$.

Definition 1.54. Let G be a group. A **p-subgroup** is a subgroup of G that is a p-group.

Definition 1.55. Let G be a group. A **Sylow p-subgroup** H (or **p-Sylow subgroup**) is a p-subgroup of G such that |H| is the highest power of P that divides |G|.

1.8 Free groups

Definition 1.56. A free group on a set S is the group of all words involving elements of S and their inverses, modulo an appropriate equivalence relation by reducing out terms like aa^{-1} .

1.9 Abelian groups

Definition 1.57. A group is **abelian** or **commutative** if ab = ba for every $a, b \in G$.

Definition 1.58. Let $\{A_i\}_{i\in I}$ be a family of abelian groups. We define their **direct sum**, $\prod_i A_i$ to be the subset of the direct product $\prod_i A_i$ consisting of all tuples (x_i) such that $x_i \neq 0$ for only finitely many i.

Definition 1.59. Let A be an abelian group. A set of elements $\{e_i\}$ is a **basis** for A if every element of A has a unique expression

$$x = \sum_{i} x_i e_i$$

where $x_i \in \mathbb{Z}$ and only finitely many $x_i \neq 0$.

Definition 1.60. An abelian group is **free** if it has a basis.

Definition 1.61. Let S be a set. Then we define $\mathbb{Z}\langle S \rangle$ to be the set of maps $\phi: S \to \mathbb{Z}$ such that $\phi(x) \neq 0$ for finitely many $x \in S$. This is called the **free abelian group generated** by S.

Definition 1.62. The **rank** of a free abelian group is the cardinality of any basis. (This is well-defined.)

1.9.1 Finitely generated abelian groups

Definition 1.63. Let G be a group and $a \in G$. The **order** or **period** of a is the smallest integer $n \in \mathbb{N}$ so that $a^n = e$.

Definition 1.64. A torsion element of a group is an element with finite order.

Definition 1.65. The torsion subgroup of a group is the subgroup of all torsion elements.

Definition 1.66. An abelian group is a **torsion group** if all elements are torsion.

Definition 1.67. Let A be an abelian group and p a prime number. Then we denote by A(p) the subgroup of elements of A whose period is a power of p. Then A(p) is a torsion group. If A(p) is finite, then it is a p-group.

Definition 1.68. A finite abelian p-group A is of type $(p^{r_1}, \ldots, p^{r_n})$ if

$$A \cong \bigoplus_{i=1}^{n} \mathbb{Z}/p^{r_i}\mathbb{Z}$$

Definition 1.69. A group is **torsion free** if every element except the identity has infinite period.

Definition 1.70. Let A be a finitely generated abelian group. The **rank** of A is the rank of the free subgroup A/A_{tor} .

1.9.2 Bilinear pairings

Definition 1.71. Let A, A', B be abelian groups. A **bilinear pairing** is a map $A \times A' \to B$ denoted by $(x, x') \mapsto \langle x, x' \rangle$, such that the maps

$$x' \mapsto \langle x, x' \rangle$$
 $x \mapsto \langle x, x' \rangle$

are both homomorphisms. That is,

$$\langle x + y, x' \rangle = \langle x, x' \rangle + \langle y, x' \rangle$$
 $\langle x, x' + y' \rangle = \langle x, x' \rangle + \langle x, y' \rangle$

Definition 1.72. Let $A \times A' \to B$ be a bilinear pairing, and $S' \subset A'$. An element $x \in A$ is **orthogonal** to S' if $\langle x, x' \rangle = 0$ for all $x' \in S'$. (Note that the set of $x \in A$ such that x is orthogonal to S' is a subgroup f(A).)

Definition 1.73. Let $A \times A' \to B$ be a bilinear pairing. The **left kernel** is the set

$$\{x \in A : \langle x, x' \rangle = 0, \ \forall x' \in A'\}$$

(Note that it is a subgroup of A.) Similarly, the **right kernel** is

$$\{x' \in A' : \langle x, x' \rangle = 0, \ \forall x \in A\}$$

1.9.3 Dual group

Definition 1.74. Let A be an abelian group. Then we define an action $\mathbb{Z} \times A \to A$ by $nx = x + \ldots + x$ where the RHS is an n-fold sum. Whenever we write nx with $n \in \mathbb{Z}$ we are referring to this action.

Definition 1.75. A an abelian group A has **exponent m** for some $m \in \mathbb{Z}$ if mx = 0 for every $x \in A$.

Definition 1.76. Let A be an abelian group of exponent m. Let \mathbb{Z}_m be the cyclic group of order m. The **dual group** of A is the set $A^{\wedge} = \text{Hom}(A, \mathbb{Z}_m)$. It is a group under pointwise addition of maps.

1.10 Inverse limit and completion

Definition 1.77. Suppose we have a sequence $\{G_n\}_{n\geq 0}$ of groups and a sequence of surjective homomorphisms $f_n: G_n \to G_{n-1}$,

$$\dots \xrightarrow{f_3} G_2 \xrightarrow{f_2} G_1 \xrightarrow{f_1} G_0$$

Then for any $x_0 \in G_0$, there is an infinite sequence $x = (x_0, x_1, x_2, ...)$ such that $f_n(x_n) = x_{n-1}$. We define multiplication of sequences component-wise, that is,

$$(x_0, x_1, \ldots) \cdot (y_0, y_1, \ldots) = (x_0 y_0, x_1 y_1, \ldots)$$

This satisfies $f_n(x_ny_n) = f_n(x_n)f_n(y_n) = x_{n-1}y_{n-1}$ because f_n is a homomorphism. This set of sequences is called the **inverse limit** of the family $\{(G_n, f_n)\}$. We denote it by $\underline{\lim}(G_n, f_n)$. It forms a group under this multiplication.

Definition 1.78. Let $G_n = \mathbb{Z}/p^{n+1}\mathbb{Z}$ for $n \geq 0$. Let $f_n : \mathbb{Z}/p^{n+1}\mathbb{Z} \to \mathbb{Z}/p^n\mathbb{Z}$ be the canonical homomorphism $x \mapsto x \mod p^n$. Each f_n is surjective, so we can form the inverse limit $\lim (G_n, f_n)$. This group is called the **p-adic integers** and is denoted by \mathbb{Z}_p .

Definition 1.79. A directed set is a partially ordered set I such that for $i, j \in I$, there exists $k \in I$ such that $i \le k$ and $j \le k$.

Definition 1.80. Let I be a directed set. A **inversely directed family** of groups is a family $\{G_i\}_{i\in I}$ and for each pair $i \leq j$ there is a homomorphism $f_i^j: G_j \to G_i$ such that for $k \leq i \leq j$ we have $f_k^i \circ f_i^j = f_k^j$ and $f_i^i = \mathrm{id}$.

Definition 1.81. Let $\{G_i\}_{i\in I}$ be an inversely directed family of groups. Then let $G = \prod_i G_i$ and Γ be the subset of G consisting of elements (x_i) with $x_i \in G_i$ such that $f_i^j(x_j) = x_i$ for all $j \geq i$. Then Γ is the **inverse limit** of the family. This is denoted by $\Gamma = \varprojlim G_i$. Note that Γ is a subgroup of G. Such a group Γ is called **profinite**.

2 Categories

Definition 2.1. A category is a collection of objects and a collection of morphisms. The collection of morphisms from an object A to another object B is denoted Hom(A, B). such that for every three objects A, B, C there is a map

$$\operatorname{Hom}(B,C) \times \operatorname{Hom}(A,B) \to \operatorname{Hom}(A,C)$$

satisfying the following: For each object A there is a unique morphism $\mathrm{Id}_A \in \mathrm{Hom}(A,A)$ which acts as right and left identity for morphisms in $\mathrm{Hom}(A,B)$ and $\mathrm{Hom}(B,A)$ respectively; and the law of composition is associative.

Definition 2.2. A morphism $f: A \to B$ in a category is called a **isomorphism** if there is a morphism $g: B \to A$ such that $g \circ f = \operatorname{Id}_A$ and $f \circ g = \operatorname{Id}_B$.

Definition 2.3. Let C be a category. An object P is called **universally attracting** if for every object A there is a unique morphism $f: A \to P$. P is called **universally repelling** if for every object B there is a unique morphism $q: P \to B$.

Example: The trivial group $\{0\}$ is universally repelling and universally attracting in the category of groups. For any group G, the only morphism $\{0\} \to G$ is the map $0 \to 0$, and the only morphism $G \to \{0\}$ is the map $x \to 0$.

Definition 2.4. Let C be a category and A, B objects. A **product** of A and B is a triple (P, f, g) consisting of an object P and two morphisms $f: P \to A$ and $g: P \to B$ such that for any object C and any morphisms $\phi: C \to A$ and $\psi: C \to B$ there is a unique morphism $h: C \to P$ so that $\phi = f \circ h$ and $\psi = g \circ h$.

3 Rings

Definition 3.1. A **ring** is a set with two operations, called addition and multiplication. With respect to addition, the set is an abelian group. With respect to multiplication, it is a monoid. It also satisfies distributivity:

$$(x+y)z = xy + yz$$
 $z(x+y) = zx + zy$

We denote the additive identity by 0 and the multiplicative identity by 1.

Definition 3.2. A ring homomorphism is a map $f: R \to R'$ that preserves addition and multiplication.

Definition 3.3. A subring is a subset of a ring that is an additive subgroup, contains 1, and is closed under multiplication.

Definition 3.4. Let A be a ring. A **unit** is an element with a multiplicative inverse.

Definition 3.5. Two elements a and b in a ring are associates if a = bu for some unit u.

Definition 3.6. A division ring is a ring in which all nonzero elements are units.

Definition 3.7. The **center** of a ring is the subset of elements that commute with every element (with respect to multiplication.)

Definition 3.8. A commutative ring is a ring in which multiplication is commutative. That is, the center is the entire ring.

Definition 3.9. A field is a commutative division ring.

Definition 3.10. Let A be a ring. A **zero divisor** is a nonzero element x such that xy = 0 for some nonzero $y \in A$.

Definition 3.11. A integral domain is a ring with no zero divisors.

Note: A division ring has no zero divisors, but an integral domain need not be a division ring. Example: \mathbb{Z} .

Definition 3.12. Let A be an integral domain. An **irreducible** element is an element a that is not a unit, and whenever a = bc for $b, c \in A$, one of b, c must be a unit. That is, an irreducible element is not the product of two non-units.

Definition 3.13. Let A be an integral domain. A is a unique factorization domain if every element a can be written as

$$a = u \prod_{i=1}^{r} p_i$$

where p_i are irreducible and u is a unit, and this factorization of a is unique up to multiplication of each p_i by units. That is, if

$$a = u \prod_{i=1}^{r} p_i = u' \prod_{j=1}^{s} q_j$$

then r = s and up to a permutation of indices, $p_i = u_i q_i$ for units $u_i \in A$.

Definition 3.14. Let A be an integral domain. We say a **divides** b and write a|b if there exists c such that ac = b.

Definition 3.15. Let A be an integral domain. For $a, b \in A$, a **g.c.d** of a and b is an element d such that d|a, d|b, and

$$x|a \text{ and } x|b \implies x|d$$

Definition 3.16. In a unique factorization domain, irreducible elements are called **primes**.

Definition 3.17. Let A be a unique factorization domain. We impose an equivalence relation on the set of primes so that $p \sim q$ if p = uq for a unit u, the choose one p from each equivalence class, let P be the set of chosen primes. We can then write $a \neq 0$ as

$$a = u \prod_{p \in P} p^{k(p)}$$

where k(p) is uniquely determined for each p. k(p) is the **order** of a at p, and is denoted $\operatorname{ord}_p a$.

Definition 3.18. Let A be a unique factorization domain. The **least common multiple** of a and b is $c \in A$ such that $\operatorname{ord}_p c = \max(\operatorname{ord}_p a, \operatorname{ord}_p b)$. Note that in a UFD, such an element always exists and is unique up to multiplication by units.

Definition 3.19. Let A be a unique factorization domain. Two elements a and b are **relatively prime** if gcd(a, b) is a unit.

Definition 3.20. Let A be a ring with unit 1_A . Define a ring homomorphism $\lambda : \mathbb{Z} \to A$ by $\lambda(1) = 1_A$. (We have defined λ on a generating set for \mathbb{Z} , so this determines λ .) If λ is injective, then A has **characteristic zero**. If the kernel is not trivial, then the **characteristic** of A is the smallest $n \in \mathbb{N}$ so that $n \in \ker \lambda$.

Definition 3.21. Let A be a subring of B, and let S be a subset of B commuting with A, that is, sa = as for $a \in A, s \in S$. Define

$$A[S] = \left\{ \sum a_{i_1} \dots a_{i_n} s_1^{i_1} \dots s_n^{i_n} : a_{i_j} \in A, s_k \in S \right\}$$

If A[S] = B, then S is a **set of generators for B over A**. One should think of A[S] as polynomials with elements of S as variables and elements of A as coefficients, though elements of S may not commute with each other.

3.1 Interesting examples of rings

Definition 3.22. Let S be a set and A be a ring. We define Map(S, A) to be the set of mappings of S into A. We define addition and multiplication in Map(S, A) pointwise,

$$(fg)(x) = f(x)g(x)$$
 $(f+g)(x) = f(x) + g(x)$

Definition 3.23. Let M be an abelian group and let A = End(M) be the set of automorphisms of M. We define addition in End(M) pointwise, and multiplication by composition of functions. Then End(M) is a ring.

Definition 3.24. Let G be a group and K be a field. Denote by K[G] the set of formal linear combinations $\alpha = \sum a_x x$ where $x \in G$ and $a_x \in K$, where only finitely many terms are nonzero. We define a sum in K[G] by

$$\left(\sum a_x x\right) + \left(\sum b_x x\right) = \sum (a_x + b_x)x$$

We define a product in K[G] by

$$\left(\sum_{x \in G} a_x x\right) \left(\sum_{y \in G} b_y y\right) = \sum_{x \in G} \sum_{y \in G} a_x b_y xy = \sum_{z \in G} \left(\sum_{xy = z} a_x b_y\right) z$$

The set K[G] is called a **group ring**. (Note that it is a ring under this addition and multiplication.)

3.2 Ideals

Definition 3.25. Let S be a subset of a ring R. We define

$$SR = \{sr : s \in S, r \in R\}$$

Definition 3.26. A left ideal of a ring A is a subset \mathfrak{a} such that $\mathfrak{a}A = \mathfrak{a}$.

Definition 3.27. A two-sided ideal of a ring A is a subset \mathfrak{a} such that $\mathfrak{a}A\mathfrak{a} = \mathfrak{a}$.

Definition 3.28. Let A be a ring. For $a_1, \ldots, a_n \in A$, the **ideal generated** by a_1, \ldots, a_n is the set

 $\left\{ \sum x_i a_i : x_i \in A \right\}$

Definition 3.29. Let A be a ring. An ideal is **principal** if it is generated by a single element.

Definition 3.30. A principal ideal domain is a ring in which every ideal is principal.

Definition 3.31. A commutative ring is **Noetherian** if every ideal is finitely generated.

Definition 3.32. Let A be a ring and $\mathfrak{a}, \mathfrak{b}$ be ideals. The **product of ideals** is

$$\mathfrak{ab} = \left\{ \sum a_i b_i : a_i \in \mathfrak{a}, b_i \in \mathfrak{b} \right\}$$

Note that ab is an ideal.

Definition 3.33. Let A be a ring and a, b be ideals. The **sum of ideals** is

$$\mathfrak{a} + \mathfrak{b} = \{a_i + b_i : a_i \in \mathfrak{a}, b_i \in \mathfrak{b}\}\$$

Note that $\mathfrak{a} + \mathfrak{b}$ is an ideal.

Definition 3.34. Let A be a ring and \mathfrak{a} an ideal. The quotient ring or factor ring, denoted A/\mathfrak{a} , is the quotient group A/\mathfrak{a} . We define multiplication on it by

$$(x + \mathfrak{a})(y + \mathfrak{a}) = xy + \mathfrak{a}$$

Then A/\mathfrak{a} is a ring.

Definition 3.35. Let A be a ring and \mathfrak{a} an ideal. For $x, y \in A$, we say

$$x \equiv y \pmod{\mathfrak{a}}$$

if $x - y \in \mathfrak{a}$. If $\mathfrak{a} = (a)$, then we write

$$x \equiv y \pmod{a}$$

to mean the same thing. If $f: A \to A/\mathfrak{a}$ is the canonical homomorphism $a \mapsto a + \mathfrak{a}$, then

$$x \equiv y \pmod{\mathfrak{a}} \iff f(x) = f(y)$$

Definition 3.36. Let A be a ring and \mathfrak{a} an ideal. The **residue class ring** of \mathfrak{a} is just another name for A/\mathfrak{a} .

Definition 3.37. Let A be a ring and \mathfrak{a} an ideal. The **residue classes modulo** \mathfrak{a} are the cosets of \mathfrak{a} .

Definition 3.38. Let A be a ring and \mathfrak{a} an ideal. The **residue class of** x **modulo** \mathfrak{a} is just the coset $x + \mathfrak{a}$.

Definition 3.39. A **prime ideal** is an ideal \mathfrak{p} such that

$$xy \in \mathfrak{p} \implies x \in \mathfrak{p} \ or \ y \in \mathfrak{p}$$

Equivantly, \mathfrak{p} is prime if A/\mathfrak{p} is an integral domain.

Definition 3.40. An ideal is **maximal** if it is a proper ideal and any ideal containing it is the whole ring.

3.3 Localization

Definition 3.41. A multiplicative subset of a ring is a subset containing 1 and closed under multiplication.

Definition 3.42. Let A be a commutative ring and S a multiplicative subset. The **localization** of A at S is the set of elements

$$S^{-1}A = \left\{ \frac{a}{s} : a \in A, s \in S \right\}$$

modulo an equivalence relation. We say $\frac{a}{s} \sim \frac{a'}{s'}$ if there exists $t \in S$ so that t(as' + s'a) = 0. We define multiplication and addition in $S^{-1}A$ by analogy with addition and multiplication in \mathbb{Q} .

Definition 3.43. Let A be an integral domain and let $S = A^*$. The **field of fractions** of A is the localization $S^{-1}A$.

Definition 3.44. A local ring is a commutative ring that has a unique maximal ideal.

Definition 3.45. Let A be a commutative ring and \mathfrak{p} a prime ideal. Let $S = A \setminus \mathfrak{p}$. We denote $S^{-1}A$ by $A_{\mathfrak{p}}$.

Definition 3.46. Let A be a commutative ring and S a multiplicative subset. Let J(A) be the set of ideals of A. Then $\psi_S: J(A) \to J(S^{-1}A)$ given by $\psi_S(\mathfrak{a}) = S^{-1}\mathfrak{a}$ is the **ideal** correspondence map. Note that ψ_S preserves addition, multiplication, intersection, and inclusion of ideals.

3.4 Polynomials

Definition 3.47. Let A be a subring of a commutative ring B and let $b \in B$. For $f = a_0 + a_1x + \ldots + a_nx^n \in A[x]$, the **associated polynomial function** is $f_B : B \to B$ by

$$f_B(b) = a_0 + a_1b + \ldots + a_nb^n$$

Definition 3.48. Let A be a subring of a commutative ring B. Fix $b \in B$. The **evaluation** $map ev_b : A[x] \to B$ given by

$$f \mapsto f(b)$$

Note that ev_b is a ring homomorphism.

Definition 3.49. Let A be a subring of a commutative ring B and fix $b \in B$. We say that b is **transcendental** over A if the evaluation map ev_b is injective.

Definition 3.50. Let $\phi: A \to B$ be a homomorphism of commutative rings. The **reduction** map is the map $A[x] \to B[x]$ given by

$$\sum_{i=0}^{n} a_i x^i \mapsto \sum_{i=1}^{n} \phi(a_i) x^i$$

Note that this is a ring homomorphism.

Definition 3.51. Let k be a field. A polynomial $f \in k[x]$ is **irreducible** if it has degree greater than or equal to 1 and if whenever f = gh with $g, h \in k[x]$, then one of g, h is a constant polynomial

Definition 3.52. Let A be a commutative ring and $f \in A[x]$. A **root** of f is an element $a \in A$ such that f(a) = 0.

Definition 3.53. Let A be a unique factorization domain. For a nonzero $a \in A$, and a prime element $p \in A$, we can write $a = p^r b$ for some $r \ge 0$, where p does not divide b. Then r is the **order of a at p**.

Definition 3.54. Let k be a field and $f \in k[x]$. The **content** of f is the gcd of the coefficients. A polynomial with content 1 is a **primitive** polynomial.

4 Modules over rings

Definition 4.1. Let A be a commutative ring. A **module** over A, also called an A-module, is an abelian group M, with a map $A \times M \to M$ satisfying

$$(a+b)x = ax + bx$$
 $a(x+y) = ax + ay$

for $a, b \in A$ and $x, y \in M$.

Definition 4.2. Let M be an A-module. A **submodule** is a subgroup $N \subset M$ such that $a \in A, x \in N \implies ax \in N$.

Definition 4.3. Let M be a A-module. If A is a field, then M is called a **vector space**.

Definition 4.4. Let A be an integral domain and M an A-module. The **torsion submodule** is the set of elements $x \in M$ such that there exists $a \in A$, $a \neq 0$ such that ax = 0.

Definition 4.5. Let M be an A-module and let \mathfrak{a} be an ideal of A. We define $\mathfrak{a}M$ to be

$$\mathfrak{a}M = \left\{ \sum a_i x_i : a_i \in \mathfrak{a}, x_i \in M \right\}$$

Note that $\mathfrak{a}(\mathfrak{b}M) = (\mathfrak{ab})M$ and $(\mathfrak{a} + \mathfrak{b})M = \mathfrak{a}M + \mathfrak{b}M$.

Definition 4.6. Let M be an A-module and N a submodule. The **quotient module** M/N is M/N viewed as a quotient of abelian groups with an obvious A-module structure.

$$A \times M/N \to M/N$$
 $(a, x + N) \mapsto ax + N$

Definition 4.7. Let M, M' be A-modules. A **A-module homomorphism**, also called an A-linear map, is a map $f: M \to M'$ such that f is an abelian group homomorphism and f preserves the action of A, that is,

$$a \cdot f(x) = f(a \cdot x)$$

for $a \in A$ and $x \in M$.

Definition 4.8. Let $f: M \to M'$ be an A-module homomorphism. The **cokernel** of f is the quotient module M'/im f.

Definition 4.9. Let M be an A-module. Then M is **cyclic** if there exists $x \in M$ such that $M = \{ax : a \in A\}$.

4.1 Homomorphism group and hom functor

Definition 4.10. Let A be a ring and X, X' be A-modules. We define $\mathbf{Hom}_{\mathbf{A}}(X, X')$ to be the set of A-module homomorphisms from X to X'. It is a group under pointwise addition of maps. We define an action $A \times \mathrm{Hom}_{A}(X, X') \to \mathrm{Hom}_{A}(X, X')$ by

$$(a \cdot \phi)(x) = a \cdot (\phi(x))$$

for $a \in A, \phi \in \text{Hom}_A(X, X')$, and $x \in X$. This makes $\text{Hom}_A(X, X')$ an A-module.

Definition 4.11. Let A be a ring and Y an A-module. We define the functor $\mathbf{Hom}_{\mathbf{A}}(Y, -)$ from the category of A-modules to itself by sending an A-module X to the A-module $\mathrm{Hom}_{\mathbf{A}}(Y, X)$ and sending $f \in \mathrm{Hom}_{\mathbf{A}}(X, X')$ to

$$\operatorname{Hom}_A(Y, f) : \operatorname{Hom}_A(Y, X) \to \operatorname{Hom}_A(Y, X')$$

 $\phi \mapsto f \circ \phi$

The identity is preserved, because $\operatorname{Hom}_A(Y,\operatorname{Id}_X)$ is given by $\phi \mapsto \operatorname{Id} \circ \phi = \phi$. It also preserves composition: let $f \in \operatorname{Hom}_A(X,X')$ and $g \in \operatorname{Hom}_A(X',X'')$. Then for $\phi \in \operatorname{Hom}_A(Y,X)$,

$$\operatorname{Hom}_{A}(Y, g \circ f)(\phi) = (g \circ f) \circ \phi = g \circ (f \circ \phi) = g \circ \operatorname{Hom}_{A}(Y, f)(\phi)$$
$$= \operatorname{Hom}_{A}(Y, g) \circ \operatorname{Hom}_{A}(Y, f)(\phi)$$
$$\Longrightarrow \operatorname{Hom}_{A}(Y, g \circ f) = \operatorname{Hom}_{A}(Y, g) \circ \operatorname{Hom}_{A}(Y, f)$$

so it is covariant.

Definition 4.12. Let A be a ring and Y an A-module. We define the functor $\mathbf{Hom}_A(-,Y)$ from the category of A-modules to itself by sending an A-module X to the A-module $\mathrm{Hom}_A(X,Y)$ and sending $f \in \mathrm{Hom}_A(X,X')$ to

$$\operatorname{Hom}_A(f,Y) : \operatorname{Hom}_A(X',Y) \to \operatorname{Hom}_A(X,Y)$$

 $\phi \mapsto \phi \circ f$

The identity is preserved, because $\operatorname{Hom}_A(\operatorname{Id}_X,Y)$ is given by $\phi \mapsto \phi \circ \operatorname{Id}_X = \phi$. Unlike the above, this is a contravariant functor: let $f \in \operatorname{Hom}_A(X,X')$ and $g \in \operatorname{Hom}_A(X',X'')$. Then for $\phi \in \operatorname{Hom}_A(X'',Y)$,

$$\operatorname{Hom}_{A}(Y, g \circ f)(\phi) = \phi \circ (g \circ f) = (\phi \circ g) \circ f = \operatorname{Hom}_{A}(g, Y)(\phi) \circ f$$
$$= \operatorname{Hom}_{A}(f, Y) \circ \operatorname{Hom}_{A}(g, Y)(\phi)$$
$$\Longrightarrow \operatorname{Hom}_{A}(Y, g \circ f) = \operatorname{Hom}_{A}(f, Y) \circ \operatorname{Hom}_{A}(g, Y)$$

so it is contravariant.

Definition 4.13. Let A be a ring and let

$$X' \xrightarrow{f} X \xrightarrow{g} X''$$

be an exact sequence of A-modules. Let Y be an A-module. The induced sequence is

$$\operatorname{Hom}_A(X',Y) \xleftarrow{\operatorname{Hom}_A(f,Y)} \operatorname{Hom}_A(X,Y) \xleftarrow{\operatorname{Hom}_A(g,Y)} \operatorname{Hom}_A(X'',Y)$$

Definition 4.14. Let Mod(A) and Mod(B) be the categories of A- and B-modules respectively and let $F: Mod(A) \to Mod(B)$ be a functor. F is **exact** if for every exact sequence

$$\dots \xrightarrow{f} X \xrightarrow{f'} X' \xrightarrow{f''} X'' \xrightarrow{f'''} \dots$$

the induced sequence

$$\dots \xrightarrow{F(f)} F(X) \xrightarrow{F(f')} F(X') \xrightarrow{F(f'')} F(X'') \xrightarrow{F(f''')} \dots$$

is exact.

Definition 4.15. Let M be an A-module. The **endomorphism ring**, denoted $\operatorname{End}_{A}(M)$, is the group $\operatorname{Hom}_{A}(M,M)$ with multiplication defined by function composition. WARNING: $\operatorname{End}_{A}(M)$ and $\operatorname{Hom}_{A}(M,M)$ have very different module structures!

4.2 Free modules

Definition 4.16. Let M be an A-module and $S \subset M$. A **linear combination** of elements of S is a sum $\sum_{x \in S} a_x x$ where $a_x \in A$, and only finitely many a_x are nonzero. The elements a_x are the **coefficients** of the linear combination.

Definition 4.17. Let M be an A-module and $S \subset M$. The **submodule generated by S** is the set of linear combinations of S,

$$N = \left\{ \sum_{x \in S} a_x x : a_x \in A, x \in S \right\}$$

where only finitely many a_x are nonzero. This is denoted $N = A\langle S \rangle$. If S is a single element set, this is called a **principal module**.

Definition 4.18. Let M be an A-module and $S \subset M$. S is **linearly independent** if

$$\sum_{x \in S} a_x x = 0 \implies \forall x, a_x = 0$$

Definition 4.19. Let M be an A-module and $S \subset M$. S is a **basis** of M if it is not empty, if it generates M, and it is linearly independent. (As a consequence of this, every element of M has a unique expression as a linear combination of elements of S.)

Definition 4.20. A free module is a module that admits a basis.

4.3 Chain complexes

Definition 4.21. Let A be a ring. An **chain complex** of A-modules is a sequence E^i of A-modules and a sequence $d^i: E^i \to E^{i+1}$ of A-module homomorphisms for $i \in \mathbb{Z}$ such that $d^i \circ d^{i-1} = 0$ for all i. Diagrammatically,

$$\dots \xrightarrow{d^{i-2}} E^{i-1} \xrightarrow{d^{i-1}} E^i \xrightarrow{d^i} E^{i+1} \xrightarrow{d^{i+1}} \dots$$

(Note: The sequence need not be exact.) The maps d^i are called **differentials**.

Definition 4.22. A chain complex is **bounded above** if $E^i = 0$ for all i > N for some N. It is **bounded below** if $E^i = 0$ for all i < M for some M. A chain complex is **bounded** or **finite** if it is bounded above and below.

Definition 4.23. Let (E^i, d^i) be a chain complex. The *i*th **homology** of the complex is the quotient module $(\ker d^i)/(\operatorname{im} d^{i-1})$.

Definition 4.24. Let M be a module. A **resolution** of M is an exact sequence

$$\ldots \longrightarrow E_n \longrightarrow E_{n-1} \longrightarrow \ldots \longrightarrow E_0 \longrightarrow M \longrightarrow 0$$

or one of the form

$$0 \longrightarrow M \longrightarrow E_0 \longrightarrow \dots \longrightarrow E_n \longrightarrow E_{n+1} \longrightarrow \dots$$

Definition 4.25. A resolution is **free** if each E_i is free. A resolution is **projective** if each E_i is projective.

Definition 4.26. Let S be a set. For $i = 0, 1, 2 \dots$ let E_i be the free module over \mathbb{Z} generated by (i+1) tuples (x_0, \dots, x_i) where $x_j \in S$. Then define $d_{i+1} : E_{i+1} \to E_i$ by defining it on the generators as

$$d_{i+1}(x_0, \dots, x_{i+1}) = \sum_{j=0}^{i+1} (-1)^j (x_0, \dots, \widehat{x}_j, x_{i+1})$$

For i = 0, let $d_0 : E_0 \to \mathbb{Z}$ be the map defined by $d_0(x_0) = 1$. The **standard complex** of S is the following resolution of \mathbb{Z} :

$$\dots \xrightarrow{d_{i+2}} E_{i+1} \xrightarrow{d_{i+1}} E_i \xrightarrow{d_i} \dots \xrightarrow{d_1} E_0 \xrightarrow{d_0} \mathbb{Z} \longrightarrow 0$$