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1 Groups

1.1 Basics

Definition 1.1. Let f : X → Y be a map of sets. We define the preimage of a subset of
A of Y to be f−1(A) = {x ∈ X : f(x) ∈ A}.

Definition 1.2. Let S be a finite set. The cardinality of S, denoted |S|, is the number of
elements in S.

Definition 1.3. The trivial group is the group with only one element. We often use the
symbol 0 to refer to the trivial group. A subgroup is said to be trivial if it is just the identity.
A homomorphism is said to be trivial if the image is the trivial subgroup.

Justification for using the symbol 0 for the trivial group: We can impose a “monoid” structure
on the category of groups by the binary operator G,G′ 7→ G×G′. (I write monoid in quotes
because the object collection in the category of groups is not actually a set.) This binary
operator is associative up to isomorphism; that is,

G× (G′ ×G′′) ∼= (G×G′)×G′′

And the trivial group is the “unit” element of this “monoid,” because

G× 0 ∼= 0×G ∼= G

So when people use the symbol 0 to refer to the trivial group, they’re thinking of this
“monoid” structure.

Definition 1.4. Let G be a group. We say that S ⊂ G generates G if every element of G
can be written as a product of elements in S. We call S a set of generators for G.

Definition 1.5. A cyclic group is a group G such that every element x ∈ G is of the form
an for some a ∈ G, n ∈ N. That is, a cyclic group is generated by one element.

Definition 1.6. Let G be an abelian group and fix n ∈ Z. The n-th power map is the
map : G→ G given by x 7→ xn. It is a group homomorphism.

Definition 1.7. The kernel of a group homomorphism φ : G → G′ is the preimage of the
identity, that is, kerφ = {g ∈ G : φ(g) = e′}.

Definition 1.8. An automorphism is an isomorphism from a group to itself. The set
of automorphisms of a given group G is denoted Aut (G). (It is a group under function
composition.)

Definition 1.9. An endomorphism is a homomorphism from a group to itself.

Definition 1.10. A group embedding is an injective group homomorphism.
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1.2 Symmetric Group

Definition 1.11. Let S be a nonempty set and let G be the set of bijections S → S. Then
G is called the permutation group of S. (The operation is function composition.)

Definition 1.12. Let Jn = {1, . . . , n} and let Sn be the permutation group of Jn. Then Sn
is called the symmetric group on n elements. Note that |Sn| = n!.

Definition 1.13. A transposition is an element τ ∈ Sn such that there exists a, b ∈ Jn so
that τ(a) = b and τ(b) = a and τ(x) = x for x 6= a, b. (Note: The transpositions generate
Sn.)

Definition 1.14. A permutation σ ∈ Sn is even if it can be written as a product of an even
number of 2-cycles. A permutation is odd if it can be written as a product of an odd number
of 2-cycles.

Definition 1.15. The alternating group is the subgroup of Sn of even permutations. It
is denoted An.

1.3 Cosets and Quotient Groups

Definition 1.16. Let G be a group, H a subset, and x ∈ G. Then we define xH = {xh :
h ∈ H}.
Definition 1.17. Let G be a group, and H,K subsets. Then we define HK = {xy : x ∈
H, y ∈ K}.
Definition 1.18. Let G be a group and H a subgroup. A left coset for H is a subset of G
of the form aH = {ah : h ∈ H} for some a ∈ G.

Using the above notation, we get the rule for multiplying cosets:

(xH)(yH) = xyH

Definition 1.19. Let G be a group and H a subgroup. The index of H in G is the number
of left cosets of H in G. It is denoted [G : H] or (G : H).

Definition 1.20. Let G be a group and H a subset. We define xHx−1 = {xhx−1 : h ∈ H}.
Definition 1.21. A subgroup H ⊂ G is normal if for all x ∈ G, xHx−1 = H (equivalently,
xH = Hx). We denote this by H /G.

Definition 1.22. A group G is simple if its only normal subgroups are itself and the trivial
subgroup, and G is nontrivial.

Definition 1.23. Let G be a group and H a normal subgroup. Then the quotient group
G/H is the set of cosets {xH : x ∈ G} with the operation

(xH)(yH) = (xy)H

It is a group.

Definition 1.24. Let G be a group and H a normal subgroup. The canonical map or
canonical projection from G to G/H is the map G→ G/H given by g 7→ gH.

Definition 1.25. Let G be a group. A maximal normal subgroup is a normal subgroup
H such that if K is a normal subgroup of G with H ⊂ K, then K = H or K = G.
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1.4 Centralizers and Normalizers

Definition 1.26. Let G be a group and S be a subset. The normalizer of S in G is
NG(S) = {x ∈ G : xSx−1 = S}.

Definition 1.27. Let G be a group and S be a subset. The centralizer of S in G is
CG(S) = {x ∈ G : xsx−1 = s ∀s ∈ S}.

Definition 1.28. Let G be a group. The center of G is the centralizer of G in itself, which
is Z(G) = {x ∈ G : xy = yx ∀y ∈ G}.

Definition 1.29. Let G be a group and a ∈ G. We say that m is an exponent of a if
am = e and m > 0.

Definition 1.30. Let G be a group. We say that m is an exponent of G if m is an
exponent of every g ∈ G.

Definition 1.31. Let G,H be groups. We define the direct product of G and H, denoted
G×H by {(g, h) : g ∈ G, h ∈ H]} and define multiplication on G×H component-wise.

Definition 1.32. Let N,H be groups, and let φ : H → Aut(N) be a group homomorphism.
We define the semidirect product of N and H through φ to be

N oφ H = {(n, h) : n ∈ N, h ∈ H}

with a multiplication defined by

(n1, h1)(n2, h2) = (n1φ(h1)n2, h1h2)

Definition 1.33. Let G0, G1, . . . Gn be groups and f1, . . . fn be group homomorphism with
fi : Gi−1 → Gi.

G0 G1 G2 . . . Gn
f1 f2 f3 fn

We call this an exact sequence if for each i, we have ker fi+1 = im fi.

Definition 1.34. Let G be a group. The commutator subgroup of G, denoted [G,G] is
the subgroup of G generated by all elements of the form aba−1b−1 for a, b ∈ G.

1.5 Towers

Definition 1.35. Let G be a group. A (finite) sequence of subgroups

G = G0 ⊃ G1 ⊃ G2 ⊃ . . . ⊃ Gn

is called a tower of subgroups for G.

Definition 1.36. A tower of subgroups G0, G1, . . . Gn is normal if each Gi+1 is normal in
Gi.
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Definition 1.37. A normal tower of subgroups G0, . . . Gn is abelian if each quotient Gi/Gi+1

is an abelian group.

Definition 1.38. A normal tower of subgroups G0, . . . Gn is cyclic if each quotiet Gi/Gi+1

is a cyclic group.

Definition 1.39. Let f : G→ G′ be a group homomorphism, and let

G′ = G′0 ⊃ G′1 ⊃ . . . ⊃ G′n

be a tower of G′. The preimage of this tower is the set of preimages of each G′i under f ,
that is, f−1(G′i).

Definition 1.40. Let
G = G0 ⊃ G1 ⊃ . . . ⊃ Gn

be a tower of subgroups for G. A refinement of this tower is another tower for G formed
by inserting a finite number of subgroups in between the Gi.

Definition 1.41. Two towers of subgroups for G given by

G = G1 ⊃ . . . ⊃ Gn

G = H1 ⊃ . . . ⊃ Hm

are equivalent if n = m and there is a permutation σ of {1 . . . , n} so that Gi/Gi+1
∼=

Hσ(i)/Hσ(i+1) for all i.

Definition 1.42. A group G is solvable if it has an abelian tower ending in the trivial
group.

1.6 Group actions

Definition 1.43. Let G be a group and S a set. A group action of G on S is a map
G× S → S given by (x, s) 7→ xs satisfying x(ys) = (xy)s for all x, y ∈ G, s ∈ S and es = s
for all s ∈ S. This is equivalent to having a homomoprhism π : G→ Perm(S).

Definition 1.44. Let ψ : G → Aut(G) be the map x 7→ ψx where ψx : G → G is the map
y 7→ xyx−1. This is a group action of G on itself, and it is called conjugation. The image
of ψ in Aut(G) is called the set of inner automorphisms of G, denoted Inn (G).

Definition 1.45. Let G be a group and let x ∈ G. The conjugacy class of x is the set
of elements of G conjugate to x, denoted cl (x). More precisely, cl(x) = {a ∈ G : ∃g ∈
G such that gxg−1 = a}.

Definition 1.46. Let A,B be subsets of a group G. We say that A,B are conjugate if
there exists x ∈ G so that xAx−1 = B.

Definition 1.47. Let G be a group acting on a set S and let s ∈ S. The stabilizer of s
(also called the isotropy group of s) is the set {x ∈ G : xs = s}. It is denoted Gs.
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Definition 1.48. Let G→ Perm(S) be a group action. The action is called faithful if the
kernel of this map is trivial, that is, if the only x ∈ G that maps to IdS is the identity.

Definition 1.49. Let G act on a set S. A fixed point of this action is an element s ∈ S
such that xs = s for all x ∈ G.

Definition 1.50. Let G act on a set S and let s ∈ S. The orbit of s is the set G.s =
{gs : g ∈ G}.

Definition 1.51. Let G act on sets S, T . A map f : S → T is called a G-map or an
equivariant map or a morphism of G-sets if f(g.s) = g.f(s) for all g ∈ G, s ∈ S.

Definition 1.52. A group action is transitive if there is only one orbit.

1.7 Sylow Theory

Definition 1.53. Let p be prime. A p-group is a finite group of order pn for some n ∈ N.

Definition 1.54. Let G be a group. A p-subgroup is a subgroup of G that is a p-group.

Definition 1.55. Let G be a group. A Sylow p-subgroup H (or p-Sylow subgroup) is
a p-subgroup of G such that |H| is the highest power of p that divides |G|.

1.8 Free groups

Definition 1.56. A free group on a set S is the group of all words involving elements of
S and their inverses, modulo an appropriate equivalence relation by reducing out terms like
aa−1.

1.9 Abelian groups

Definition 1.57. A group is abelian or commutative if ab = ba for every a, b ∈ G.

Definition 1.58. Let {Ai}i∈I be a family of abelian groups. We define their direct sum,∏
iAi to be the subset of the direct product

∏
iAi consisting of all tuples (xi) such that xi 6= 0

for only finitely many i.

Definition 1.59. Let A be an abelian group. A set of elements {ei} is a basis for A if every
element of A has a unique expression

x =
∑
i

xiei

where xi ∈ Z and only finitely many xi 6= 0.

Definition 1.60. An abelian group is free if it has a basis.

Definition 1.61. Let S be a set. Then we define Z〈S〉 to be the set of maps φ : S → Z such
that φ(x) 6= 0 for finitely many x ∈ S. This is called the free abelian group generated
by S.

Definition 1.62. The rank of a free abelian group is the cardinality of any basis. (This is
well-defined.)
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1.9.1 Finitely generated abelian groups

Definition 1.63. Let G be a group and a ∈ G. The order or period of a is the smallest
integer n ∈ N so that an = e.

Definition 1.64. A torsion element of a group is an element with finite order.

Definition 1.65. The torsion subgroup of a group is the subgroup of all torsion elements.

Definition 1.66. An abelian group is a torsion group if all elements are torsion.

Definition 1.67. Let A be an abelian group and p a prime number. Then we denote by
A(p) the subgroup of elements of A whose period is a power of p. Then A(p) is a torsion
group. If A(p) is finite, then it is a p-group.

Definition 1.68. A finite abelian p-group A is of type (pr1 , . . . , prn) if

A ∼=
n⊕
i=1

Z/priZ

Definition 1.69. A group is torsion free if every element except the identity has infinite
period.

Definition 1.70. Let A be a finitely generated abelian group. The rank of A is the rank of
the free subgroup A/Ator.

1.9.2 Bilinear pairings

Definition 1.71. Let A,A′, B be abelian groups. A bilinear pairing is a map A×A′ → B
denoted by (x, x′) 7→ 〈x, x′〉, such that the maps

x′ 7→ 〈x, x′〉 x 7→ 〈x, x′〉

are both homomorphisms. That is,

〈x+ y, x′〉 = 〈x, x′〉+ 〈y, x′〉 〈x, x′ + y′〉 = 〈x, x′〉+ 〈x, y′〉

Definition 1.72. Let A× A′ → B be a bilinear pairing, and S ′ ⊂ A′. An element x ∈ A is
orthogonal to S ′ if 〈x, x′〉 = 0 for all x′ ∈ S ′. (Note that the set of x ∈ A such that x is
orthogonal to S ′ is a subgroup f A.)

Definition 1.73. Let A× A′ → B be a bilinear pairing. The left kernel is the set

{x ∈ A : 〈x, x′〉 = 0, ∀x′ ∈ A′}

(Note that it is a subgroup of A.) Similarly, the right kernel is

{x′ ∈ A′ : 〈x, x′〉 = 0, ∀x ∈ A}
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1.9.3 Dual group

Definition 1.74. Let A be an abelian group. Then we define an action Z × A → A by
nx = x+ . . .+ x where the RHS is an n-fold sum. Whenever we write nx with n ∈ Z we are
referring to this action.

Definition 1.75. A an abelian group A has exponent m for some m ∈ Z if mx = 0 for
every x ∈ A.

Definition 1.76. Let A be an abelian group of exponent m. Let Zm be the cyclic group of
order m. The dual group of A is the set A∧ = Hom(A,Zm). It is a group under pointwise
addition of maps.

1.10 Inverse limit and completion

Definition 1.77. Suppose we have a sequence {Gn}n≥0 of groups and a sequence of surjective
homomorphisms fn : Gn → Gn−1,

. . .
f3−−−→ G2

f2−−−→ G1
f1−−−→ G0

Then for any x0 ∈ G0, there is an infinite sequence x = (x0, x1, x2, . . .) such that fn(xn) =
xn−1. We define multiplication of sequences component-wise, that is,

(x0, x1, . . .) · (y0, y1, . . .) = (x0y0, x1y1, . . .)

This satisfies fn(xnyn) = fn(xn)fn(yn) = xn−1yn−1 because fn is a homomorphism. This
set of sequences is called the inverse limit of the family {(Gn, fn)}. We denote it by
lim←−(Gn, fn). It forms a group under this multiplication.

Definition 1.78. Let Gn = Z/pn+1Z for n ≥ 0. Let fn : Z/pn+1Z→ Z/pnZ be the canonical
homomorphism x 7→ x mod pn. Each fn is surjective, so we can form the inverse limit
lim←−(Gn, fn). This group is called the p-adic integers and is denoted by Zp.

Definition 1.79. A directed set is a partially ordered set I such that for i, j ∈ I, there
exists k ∈ I such that i ≤ k and j ≤ k.

Definition 1.80. Let I be a directed set. A inversely directed family of groups is a
family {Gi}i∈I and for each pair i ≤ j there is a homomorphism f ji : Gj → Gi such that for
k ≤ i ≤ j we have f ik ◦ f

j
i = f jk and f ii = id.

Definition 1.81. Let {Gi}i∈I be an inversely directed family of groups. Then let G =
∏

iGi

and Γ be the subset of G consisting of elements (xi) with xi ∈ Gi such that f ji (xj) = xi for
all j ≥ i. Then Γ is the inverse limit of the family. This is denoted by Γ = lim←−Gi. Note
that Γ is a subgroup of G. Such a group Γ is called profinite.
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2 Categories

Definition 2.1. A category is a collection of objects and a collection of morphisms. The
collection of morphisms from an object A to another object B is denoted Hom(A,B). such
that for every three objects A,B,C there is a map

Hom(B,C)× Hom(A,B)→ Hom(A,C)

satisfying the following: For each object A there is a unique morphism IdA ∈ Hom(A,A)
which acts as right and left identity for morphisms in Hom(A,B) and Hom(B,A) respectively;
and the law of composition is associative.

Definition 2.2. A morphism f : A→ B in a category is called a isomorphism if there is
a morphism g : B → A such that g ◦ f = IdA and f ◦ g = IdB.

Definition 2.3. Let C be a category. An object P is called universally attracting if for
every object A there is a unique morphism f : A → P . P is called universally repelling
if for every object B there is a unique morphism g : P → B.

Example: The trivial group {0} is universally repelling and universally attracting in the
category of groups. For any group G, the only morphism {0} → G is the map 0 7→ 0, and
the only morphism G→ {0} is the map x 7→ 0.

Definition 2.4. Let C be a category and A,B objects. A product of A and B is a triple
(P, f, g) consisting of an object P and two morphisms f : P → A and g : P → B such that
for any object C and any morphisms φ : C → A and ψ : C → B there is a unique morphism
h : C → P so that φ = f ◦ h and ψ = g ◦ h.

3 Rings

Definition 3.1. A ring is a set with two operations, called addition and multiplication.
With respect to addition, the set is an abelian group. With respect to multiplication, it is a
monoid. It also satisfies distributivity:

(x+ y)z = xy + yz z(x+ y) = zx+ zy

We denote the additive identity by 0 and the multiplicative identity by 1.

Definition 3.2. A ring homomorphism is a map f : R→ R′ that preserves addition and
multiplication.

Definition 3.3. A subring is a subset of a ring that is an additive subgroup, contains 1,
and is closed under multiplication.

Definition 3.4. Let A be a ring. A unit is an element with a multiplicative inverse.

Definition 3.5. Two elements a and b in a ring are associates if a = bu for some unit u.

Definition 3.6. A division ring is a ring in which all nonzero elements are units.
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Definition 3.7. The center of a ring is the subset of elements that commute with every
element (with respect to multiplication.)

Definition 3.8. A commutative ring is a ring in which multiplication is commutative.
That is, the center is the entire ring.

Definition 3.9. A field is a commutative division ring.

Definition 3.10. Let A be a ring. A zero divisor is a nonzero element x such that xy = 0
for some nonzero y ∈ A.

Definition 3.11. A integral domain is a ring with no zero divisors.

Note: A division ring has no zero divisors, but an integral domain need not be a division
ring. Example: Z.

Definition 3.12. Let A be an integral domain. An irreducible element is an element a
that is not a unit, and whenever a = bc for b, c ∈ A, one of b, c must be a unit. That is, an
irreducible element is not the product of two non-units.

Definition 3.13. Let A be an integral domain. A is a unique factorization domain if
every element a can be written as

a = u
r∏
i=1

pi

where pi are irreducible and u is a unit, and this factorization of a is unique up to multipli-
cation of each pi by units. That is, if

a = u
r∏
i=1

pi = u′
s∏
j=1

qj

then r = s and up to a permutation of indices, pi = uiqi for units ui ∈ A.

Definition 3.14. Let A be an integral domain. We say a divides b and write a|b if there
exists c such that ac = b.

Definition 3.15. Let A be an integral domain. For a, b ∈ A, a g.c.d of a and b is an
element d such that d|a, d|b, and

x|a and x|b =⇒ x|d

Definition 3.16. In a unique factorization domain, irreducible elements are called primes.

Definition 3.17. Let A be a unique factorization domain. We impose an equivalence relation
on the set of primes so that p ∼ q if p = uq for a unit u, the choose one p from each
equivalence class, let P be the set of chosen primes. We can then write a 6= 0 as

a = u
∏
p∈P

pk(p)

where k(p) is uniquely determined for each p. k(p) is the order of a at p, and is denoted
ordp a.
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Definition 3.18. Let A be a unique factorization domain. The least common multiple
of a and b is c ∈ A such that ordp c = max(ordp a, ordp b). Note that in a UFD, such an
element always exists and is unique up to multiplication by units.

Definition 3.19. Let A be a unique factorization domain. Two elements a and b are rela-
tively prime if gcd(a, b) is a unit.

Definition 3.20. Let A be a ring with unit 1A. Define a ring homomorphism λ : Z →
A by λ(1) = 1A. (We have defined λ on a generating set for Z, so this determines λ.)
If λ is injective, then A has characteristic zero. If the kernel is not trivial, then the
characteristic of A is the smallest n ∈ N so that n ∈ kerλ.

Definition 3.21. Let A be a subring of B, and let S be a subset of B commuting with A,
that is, sa = as for a ∈ A, s ∈ S. Define

A[S] =
{∑

ai1 . . . ains
i1
1 . . . s

in
n : aij ∈ A, sk ∈ S

}
If A[S] = B, then S is a set of generators for B over A. One should think of A[S]
as polynomials with elements of S as variables and elements of A as coefficients, though
elements of S may not commute with each other.

3.1 Interesting examples of rings

Definition 3.22. Let S be a set and A be a ring. We define Map (S,A) to be the set of
mappings of S into A. We define addition and multiplication in Map(S,A) pointwise,

(fg)(x) = f(x)g(x) (f + g)(x) = f(x) + g(x)

Definition 3.23. Let M be an abelian group and let A = End (M) be the set of automor-
phisms of M . We define addition in End(M) pointwise, and multiplication by composition
of functions. Then End(M) is a ring.

Definition 3.24. Let G be a group and K be a field. Denote by K[G] the set of formal
linear combinations α =

∑
axx where x ∈ G and ax ∈ K, where only finitely many terms

are nonzero. We define a sum in K[G] by(∑
axx
)

+
(∑

bxx
)

=
∑

(ax + bx)x

We define a product in K[G] by(∑
x∈G

axx

)(∑
y∈G

byy

)
=
∑
x∈G

∑
y∈G

axbyxy =
∑
z∈G

(∑
xy=z

axby

)
z

The set K[G] is called a group ring. (Note that it is a ring under this addition and
multiplication.)
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3.2 Ideals

Definition 3.25. Let S be a subset of a ring R. We define

SR = {sr : s ∈ S, r ∈ R}

Definition 3.26. A left ideal of a ring A is a subset a such that aA = a.

Definition 3.27. A two-sided ideal of a ring A is a subset a such that aAa = a.

Definition 3.28. Let A be a ring. For a1, . . . , an ∈ A, the ideal generated by a1, . . . , an
is the set {∑

xiai : xi ∈ A
}

Definition 3.29. Let A be a ring. An ideal is principal if it is generated by a single
element.

Definition 3.30. A principal ideal domain is a ring in which every ideal is principal.

Definition 3.31. A commutative ring is Noetherian if every ideal is finitely generated.

Definition 3.32. Let A be a ring and a, b be ideals. The product of ideals is

ab =
{∑

aibi : ai ∈ a, bi ∈ b
}

Note that ab is an ideal.

Definition 3.33. Let A be a ring and a, b be ideals. The sum of ideals is

a + b = {ai + bi : ai ∈ a, bi ∈ b}

Note that a + b is an ideal.

Definition 3.34. Let A be a ring and a an ideal. The quotient ring or factor ring,
denoted A/a, is the quotient group A/a. We define multiplication on it by

(x+ a)(y + a) = xy + a

Then A/a is a ring.

Definition 3.35. Let A be a ring and a an ideal. For x, y ∈ A, we say

x ≡ y (mod a)

if x− y ∈ a. If a = (a), then we write

x ≡ y (mod a)

to mean the same thing. If f : A→ A/a is the canonical homomorphism a 7→ a+ a, then

x ≡ y (mod a) ⇐⇒ f(x) = f(y)
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Definition 3.36. Let A be a ring and a an ideal. The residue class ring of a is just
another name for A/a.

Definition 3.37. Let A be a ring and a an ideal. The residue classes modulo a are the
cosets of a.

Definition 3.38. Let A be a ring and a an ideal. The residue class of x modulo a is
just the coset x+ a.

Definition 3.39. A prime ideal is an ideal p such that

xy ∈ p =⇒ x ∈ p or y ∈ p

Equivantly, p is prime if A/p is an integral domain.

Definition 3.40. An ideal is maximal if it is a proper ideal and any ideal containing it is
the whole ring.

3.3 Localization

Definition 3.41. A multiplicative subset of a ring is a subset containing 1 and closed
under multiplication.

Definition 3.42. Let A be a commutative ring and S a multiplicative subset. The local-
ization of A at S is the set of elements

S−1A =
{a
s

: a ∈ A, s ∈ S
}

modulo an equivalence relation. We say a
s
∼ a′

s′
if there exists t ∈ S so that t(as′ + s′a) = 0.

We define multiplication and addition in S−1A by analogy with addition and multiplication
in Q.

Definition 3.43. Let A be an integral domain and let S = A∗. The field of fractions of
A is the localization S−1A.

Definition 3.44. A local ring is a commutative ring that has a unique maximal ideal.

Definition 3.45. Let A be a commutative ring and p a prime ideal. Let S = A \ p. We
denote S−1A by Ap.

Definition 3.46. Let A be a commutative ring and S a multiplicative subset. Let J(A) be
the set of ideals of A. Then ψS : J(A) → J(S−1A) given by ψS(a) = S−1a is the ideal
correspondence map. Note that ψS preserves addition, multiplication, intersection, and
inclusion of ideals.
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3.4 Polynomials

Definition 3.47. Let A be a subring of a commutative ring B and let b ∈ B. For f =
a0 + a1x+ . . .+ anx

n ∈ A[x], the associated polynomial function is fB : B → B by

fB(b) = a0 + a1b+ . . .+ anb
n

Definition 3.48. Let A be a subring of a commutative ring B. Fix b ∈ B. The evaluation
map evb : A[x]→ B given by

f 7→ f(b)

Note that evb is a ring homomorphism.

Definition 3.49. Let A be a subring of a commutative ring B and fix b ∈ B. We say that
b is transcendental over A if the evaluation map evb is injective.

Definition 3.50. Let φ : A→ B be a homomorphism of commutative rings. The reduction
map is the map A[x]→ B[x] given by

n∑
i=0

aix
i 7→

n∑
i=1

φ(ai)x
i

Note that this is a ring homomorphism.

Definition 3.51. Let k be a field. A polynomial f ∈ k[x] is irreducible if it has degree
greater than or equal to 1 and if whenever f = gh with g, h ∈ k[x], then one of g, h is a
constant polynomial

Definition 3.52. Let A be a commutative ring and f ∈ A[x]. A root of f is an element
a ∈ A such that f(a) = 0.

Definition 3.53. Let A be a unique factorization domain. For a nonzero a ∈ A, and a
prime element p ∈ A, we can write a = prb for some r ≥ 0, where p does not divide b. Then
r is the order of a at p.

Definition 3.54. Let k be a field and f ∈ k[x]. The content of f is the gcd of the
coefficients. A polynomial with content 1 is a primitive polynomial.

4 Modules over rings

Definition 4.1. Let A be a commutative ring. A module over A, also called an A-module,
is an abelian group M , with a map A×M →M satisfying

(a+ b)x = ax+ bx a(x+ y) = ax+ ay

for a, b ∈ A and x, y ∈M .

Definition 4.2. Let M be an A-module. A submodule is a subgroup N ⊂ M such that
a ∈ A, x ∈ N =⇒ ax ∈ N .
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Definition 4.3. Let M be a A-module. If A is a field, then M is called a vector space.

Definition 4.4. Let A be an integral domain and M an A-module. The torsion submodule
is the set of elements x ∈M such that there exists a ∈ A, a 6= 0 such that ax = 0.

Definition 4.5. Let M be an A-module and let a be an ideal of A. We define aM to be

aM =
{∑

aixi : ai ∈ a, xi ∈M
}

Note that a(bM) = (ab)M and (a + b)M = aM + bM .

Definition 4.6. Let M be an A-module and N a submodule. The quotient module M/N
is M/N viewed as a quotient of abelian groups with an obvious A-module structure.

A×M/N →M/N (a, x+N) 7→ ax+N

Definition 4.7. Let M,M ′ be A-modules. A A-module homomorphism, also called an
A-linear map, is a map f : M → M ′ such that f is an abelian group homomorphism and f
preserves the action of A, that is,

a · f(x) = f(a · x)

for a ∈ A and x ∈M .

Definition 4.8. Let f : M → M ′ be an A-module homomorphism. The cokernel of f is
the quotient module M ′/ im f .

Definition 4.9. Let M be an A-module. Then M is cyclic if there exists x ∈M such that
M = {ax : a ∈ A}.

4.1 Homomorphism group and hom functor

Definition 4.10. Let A be a ring and X,X ′ be A-modules. We define HomA(X,X ′) to be
the set of A-module homomorphisms from X to X ′. It is a group under pointwise addition
of maps. We define an action A× HomA(X,X ′)→ HomA(X,X ′) by

(a · φ)(x) = a · (φ(x))

for a ∈ A, φ ∈ HomA(X,X ′), and x ∈ X. This makes HomA(X,X ′) an A-module.

Definition 4.11. Let A be a ring and Y an A-module. We define the functor HomA(Y,−)
from the category of A-modules to itself by sending an A-module X to the A-module HomA(Y,X)
and sending f ∈ HomA(X,X ′) to

HomA(Y, f) : HomA(Y,X)→ HomA(Y,X ′)

φ 7→ f ◦ φ
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The identity is preserved, because HomA(Y, IdX) is given by φ 7→ Id ◦φ = φ. It also preserves
composition: let f ∈ HomA(X,X ′) and g ∈ HomA(X ′, X ′′). Then for φ ∈ HomA(Y,X),

HomA(Y, g ◦ f)(φ) = (g ◦ f) ◦ φ = g ◦ (f ◦ φ) = g ◦ HomA(Y, f)(φ)

= HomA(Y, g) ◦ HomA(Y, f)(φ)

=⇒ HomA(Y, g ◦ f) = HomA(Y, g) ◦ HomA(Y, f)

so it is covariant.

Definition 4.12. Let A be a ring and Y an A-module. We define the functor HomA(−, Y )
from the category of A-modules to itself by sending an A-module X to the A-module HomA(X, Y )
and sending f ∈ HomA(X,X ′) to

HomA(f, Y ) : HomA(X ′, Y )→ HomA(X, Y )

φ 7→ φ ◦ f

The identity is preserved, because HomA(IdX , Y ) is given by φ 7→ φ ◦ IdX = φ. Unlike the
above, this is a contravariant functor: let f ∈ HomA(X,X ′) and g ∈ HomA(X ′, X ′′). Then
for φ ∈ HomA(X ′′, Y ),

HomA(Y, g ◦ f)(φ) = φ ◦ (g ◦ f) = (φ ◦ g) ◦ f = HomA(g, Y )(φ) ◦ f
= HomA(f, Y ) ◦ HomA(g, Y )(φ)

=⇒ HomA(Y, g ◦ f) = HomA(f, Y ) ◦ HomA(g, Y )

so it is contravariant.

Definition 4.13. Let A be a ring and let

X ′
f−−−→ X

g−−−→ X ′′

be an exact sequence of A-modules. Let Y be an A-module. The induced sequence is

HomA(X ′, Y )
HomA(f,Y )←−−−−−− HomA(X, Y )

HomA(g,Y )←−−−−−− HomA(X ′′, Y )

Definition 4.14. Let Mod(A) and Mod(B) be the categories of A− and B−modules respec-
tively and let F : Mod(A)→ Mod(B) be a functor. F is exact if for every exact sequence

. . .
f−−−→ X

f ′−−−→ X ′
f ′′−−−→ X ′′

f ′′′−−−→ . . .

the induced sequence

. . .
F (f)−−−→ F (X)

F (f ′)−−−→ F (X ′)
F (f ′′)−−−→ F (X ′′)

F (f ′′′)−−−−→ . . .

is exact.

Definition 4.15. Let M be an A-module. The endomorphism ring, denoted EndA(M),
is the group HomA(M,M) with multiplication defined by function composition. WARNING:
EndA(M) and HomA(M,M) have very different module structures!
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4.2 Free modules

Definition 4.16. Let M be an A-module and S ⊂M . A linear combination of elements
of S is a sum

∑
x∈S axx where ax ∈ A, and only finitely many ax are nonzero. The elements

ax are the coefficients of the linear combination.

Definition 4.17. Let M be an A-module and S ⊂ M . The submodule generated by S
is the set of linear combinations of S,

N =

{∑
x∈S

axx : ax ∈ A, x ∈ S

}

where only finitely many ax are nonzero. This is denoted N = A〈S〉. If S is a single
element set, this is called a principal module.

Definition 4.18. Let M be an A-module and S ⊂M . S is linearly independent if∑
x∈S

axx = 0 =⇒ ∀x, ax = 0

Definition 4.19. Let M be an A-module and S ⊂M . S is a basis of M if it is not empty,
if it generates M , and it is linearly independent. (As a consequence of this, every element
of M has a unique expresssion as a linear combination of elements of S.)

Definition 4.20. A free module is a module that admits a basis.

4.3 Chain complexes

Definition 4.21. Let A be a ring. An chain complex of A-modules is a sequence Ei of
A-modules and a sequence di : Ei → Ei+1 of A-module homomorphisms for i ∈ Z such that
di ◦ di−1 = 0 for all i. Diagrammatically,

. . .
di−2

−−−→ Ei−1 di−1

−−−→ Ei di−−−→ Ei+1 di+1

−−−→ . . .

(Note: The sequence need not be exact.) The maps di are called differentials.

Definition 4.22. A chain complex is bounded above if Ei = 0 for all i > N for some N .
It is bounded below if Ei = 0 for all i < M for some M . A chain complex is bounded or
finite if it is bounded above and below.

Definition 4.23. Let (Ei, di) be a chain complex. The ith homology of the complex is the
quotient module (ker di)/(im di−1).

Definition 4.24. Let M be a module. A resolution of M is an exact sequence

. . . −−−→ En −−−→ En−1 −−−→ . . . −−−→ E0 −−−→ M −−−→ 0

or one of the form

0 −−−→ M −−−→ E0 −−−→ . . . −−−→ En −−−→ En+1 −−−→ . . .

18



Definition 4.25. A resolution is free if each Ei is free. A resolution is projective if each
Ei is projective.

Definition 4.26. Let S be a set. For i = 0, 1, 2 . . . let Ei be the free module over Z generated
by (i + 1) tuples (x0, . . . , xi) where xj ∈ S. Then define di+1 : Ei+1 → Ei by defining it on
the generators as

di+1(x0, . . . , xi+1) =
i+1∑
j=0

(−1)j(x0, . . . , x̂j, xi+1)

For i = 0, let d0 : E0 → Z be the map defined by d0(x0) = 1. The standard complex of S
is the following resolution of Z:

. . .
di+2−−−→ Ei+1

di+1−−−→ Ei
di−−−→ . . .

d1−−−→ E0
d0−−−→ Z −−−→ 0
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